Bhavan
 BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri
Autonomous College |Affiliated to Osmania University
Accredited with 'A' Grade by NAAC

B Sc Physics - Template

SCHEME OF INSTRUCTIONS
UNDER CBCS (W.e.f 2023-24 academic year onwards)

Year	Semester	Course Type	Course Title	Instructions Hrs./week	Marks	Credits
$\begin{gathered} \text { I } \\ \text { Year } \end{gathered}$	I	Theory	Mechanics	4	100	4
		Practical	Mechanics Lab	3	25	1
	II	Theory	Thermal Physics	4	100	4
		Practical	Thermal Physics Lab	3	25	1
$\begin{gathered} \text { II } \\ \text { Year } \end{gathered}$	III	Theory	Electromagnetic Theory	4	100	4
		Practical	Electromagnetic Theory Lab	3	25	1
		SEC	SEC 1 Experimental methods and error analysis Or SEC 2 Basic Instrumentation	2	50	2
	IV	Theory	Waves and Optics	4	100	4
		Practical	Waves and Optics Lab	3	25	1
		SEC	SEC 1 Electrical Circuit Networking Or SEC 2 PSPICE Or SEC 3 Biomedical Instrumentation	2	50	2
III Year	V	Theory	A: Modern Physics (OR) B: Computational Physics	4	100	4
		Practical	A: Modern Physics Lab (OR) B: Computational Physics Lab	3	25	1
		GE	Renewable Energy and Energy Harvesting	4	100	4
	VI	Theory	A: Electronics (OR) B : Applied Optics	4	100	4
		Practical	A: Electronics Lab(OR) B: Applied Optics Lab	3	25	1
		Optional Paper	Nano Science	4	100	4
Total Credits				42		
Value Added Course				2		
How in Dept. of Physios \& Electronics \qquad Deplot of :ivekananda College .ik.puri Board of Studies in Physics Osmania University						

BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri
Autonomous College |Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
B Sc I Year Physics
W.e.f the academic year: 2020-21

Semester I Course Name: Mechanics Course Code: PH123 (60 Hours)

HPW: 4
CREDITS: 4

Course Objectives: This course is designed to
COB1: illustrate applications of vector differentiation, integration
COB2: describe motion associated with variable mass system and rigid bodies.
COB3: interpret the laws of planetary motion
COB4: infer the concept of relativity.
15 Hours
Unit - I
Vector Analysis
Scalar and vector fields, gradient of a scalar field and its physical significance. Divergence and Curl of a vector field and related problems. Vector integration- line, surface and volume integrals. Stokes, Gauss, and Green's theorems - simple applications.

15 Hours
Unit-II
Motion of variable mass system
Laws of Motion-Motion of variable mass system, motion of a rocket, multi- stage rocket, conservation of energy and momentum.

Mechanics of rigid bodies

Definition of Rigid body. Rotational kinematic relations, equation of motion for a rotating body, angular momentum and inertia tensor. Euler's equations, torque free motion of a symmetric top. Symmetric top and processional motion, Gyroscope.

15 Hours
Unit - III
Central forces
Central forces - definition and examples, conservative nature of central forces, force as a negative gradient of potential energy, center of mass of many body system, two body problem, equation of motion under a central force, gravitation potential and gravitational field, Kepler's Laws-Derivation,

15 Hours

Unit - IV

Frames of reference and transformation
Frames of reference- inertial and non-inertial, Galilean transformation equations, Galilean Invariance, absolute frame of reference, Michelson - Morley experiment- significance of negative result.

Consequences of relativistic transformations

Postulates of special theory of relativity, Lorentz transformation, time dilation, length contraction, addition of velocities, mass - energy relation. Concept of four vector formalism and their transformations.

Note: Problems should be solved at the end of every chapter of all the units.
Course Outcomes: By the end of this course, the student will be able to
C01: use the concepts of vector differentiation, integration and remember impact of variation of mass in motion.
C02: remember various types of rigid body motion.
CO3: outline concepts of central forces.
C04: outline the concept of relativity.

Text books:

1. First year Physics - Telugu Academy
2. Mechanics, D S Mathur, S Chand and company Limited,
3. Mechanics of Particles, Waves and Oscillations. Anwar Kamal, New Age International
4. Mechanics of Particles, Waves and Oscillations. Dr S L Gupta and Sanjeev Gupta, Jai Prakash Nath Publications
5. Mechanics by H S Hans and S P Puri, Tata-McGraw Hill Company Edition, 2008.
6. College Physics - I. T. Bhimasankaram and G. Prasad Himalaya Publishing House.

Reference Books:

1. Fundamentals of Physics. Halliday/Resnick/Walker Wiley India Edition 2007.
2. Berkeley Physics Course Vol.1, Mechanics by C. Kittel, M.A. Ruderman - Tata McGraw hill Company Edition 2008.
3. University Physics by Young and Freeman, Pearson Edition, Edition 2005.
4. Sears and Zemansky's University Physics by Hugh D. Young, Roger A. Freedman Pearson Education Eleventh Edition.
5. An Introduction to Mechanics by Daniel Kleppner \& Robert Kolenkow. The McGrawHill Companies.
6. Engineering Physics. R.K. Gaur \& S.L. Gupta. Dhanpat Rai Publications.

Chairperson
BoS in Physics
Eler
Dept. of Physics \& Ele:-
Bhavan's Vivekananda:-

Board of Studies in Physics
Osmania University
Hyderabad - 500007

Semester I Course Name: Mechanics Lab
 HPV: 3
 (45 Hours - 15 sessions)

Course Code: PH123P

CREDITS: 1

Course Objectives: This course is designed to
COB1: be able to determine moment of inertia and elastic constants.
COB2: study flow of liquids through capillaries and understand capillary rise

Experiments:

1. Determination of Moment of Inertia of rectangular lamina and verification of perpendicular axes theorem using Bifilar suspension.
2. Calculate young modulus and rigidity modulus using oscillations of a mass under different combination of springs.
3. ' Y ' by uniform Bending (or) Non- uniform Bending.
4. Moment of inertia of a fly wheel.
5. Measurement of rigidity modulus using Torsional Pendulum.
6. Determination of Surface Tension of a liquid using capillary rise.
7. Study of flow of liquids through capillaries-measurement of coefficient of viscosity.
8. Determination of g and k from the study of oscillations of compound pendulum.

Course Outcomes: By the end of this course, the student will be able to CO1: acquire skill to determine moment of inertia and elastic constants. CO2: adapt the methods of measurement of surface tension and coefficient of viscosity

Recommended Books:

1. B.Sc Practical Physics by C L Arora, S.Chand \& Company Ltd.
2. B.Sc Practical Physics by Harnam Singh Dr P S Heme S.Chand \& Company Ltd.
3. Advanced Practical Physics for Students, B L Flint and HT Worsnop
4. Theory of Machines by R S Khurmi and J K Gupta, S.Chand \& Company Ltd.
5. Introduction to Physics for Scientists and Engineers. F.J Ruche. McGraw Hill.
6. A Text Book of Practical Physics, Indu Prakash \& Ramakrishna, Kitab Mahal, New Delhi
7. Measurement, Instrumentation and Experiment Design in Physics and Engineering by Michael Sayer, Abhai Mansingh, PHI Publishers.

CHAIRMAN
Board of Studies in Physics
Osmania University
Hyderabad - 500007
TS.

Bram
 BHAVAN'S VIVEMavan
 of Science, Humani ANDA COLLEGE

Commerce, Sainikpuri
Ac College |Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
B Sc I Year Physics
W.e.f the academic year: 2020-21

Semester II Course Name: Thermal Physics Course Code: PH223 (60 Hours)

HPW: 4
CREDITS: 4
Course Objectives: This course is designed to
COB1: define the Laws of Thermodnamics
COB2: relate Lows of Thermodynamics in various applications
COB3: discuss various laws of Black body radiations and its applications
COB4: understand the phenomenon of kinetic theory of gases and statistical mechanics

Unit I

15 hours
Thermodynamics
Basics of thermodynamics- Isothermal and Adiabatic processes - Work done and relation between the specific heats. Reversible and Irreversible processes. Carnot's Engine and its efficiency. Kelvin's and Claussius statements, Thermodynamic scale of temperature.

Entropy

Physical significance. Change in entropy in reversible and irreversible processes, Entropy and disorder, Entropy of Universe, Temperature-Entropy (T-S) diagram. Change of entropy of a perfect gas and change of entropy when ice changes into steam.

Unit II

15 hours
Thermodynamic potentials and Maxwell's equations
Themodynamic Potentials: Definitions, properties and applications. First and Second order Phase Transitions. Derivation of Maxwell's thermodynamic Relations and their applications, Maxwell's Relations: (1) Clausius-Clapeyron's equation (2) Value of $\mathrm{Cp}_{\mathrm{p}} \mathrm{C}_{\mathrm{v}}$ (3) TdS Equations. Joule Kelvin effect: Expression for Joule Kelvin coefficient for perfect and Vander Waal's gas.
Low temperature Physics
Methods of production of low temperatures: Joule Thomson's porous plug experiment. Distinction between Joule's, Adiabatic and Joule Thomson's Expansion processes. Liquification of gases: liquification of Hydrogen and Helium. Adiabatic Demagnetization. Principle of Refrigeration, Vapor Compression Machine.

Unit III
15 hours

Radiation Laws

Black body: Ferry's black body, distribution of energy in the spectrum of Black body. Stefan's law, Wien's displacement law (qualitative), Wien's law and Rayleigh-Jean's law. Quantum theory of Radiation: Planck's law, deduction of Wien's law, Rayleigh-Jeans law and Stefan's law from Planck's law.

Measurement of Radiation

Pyrometers: Types of pyrometers. Disappearing filament optical pyrometer. Angstrom Pyro heliometer and determination of solar constant. Estimation of temperature of Sun.

Osmania University
Hyderabad - 500007
T.S.
filaments of Kinetic theory of gases: Mean free path and degrees of freedom. Law of Equipartition of energy and its application to specific heat of mono and diatomic gases. Equation of State: Ideal and Vander waal's gases. Distribution of velocities: Derivation of Maxwell's law of distribution of speeds in ideal gas and its experimental verification. Speed distribution curves. frullsport phenomena: Viscosity, Thermal conduction and diffusion.

Saristical Mechanics
Introduction to Statistical Mechanics: Concept of ensembles and phase space. Concept of probability: Probability distribution and Statistical equilibrium. Maxwell Boltzmann's distribution law: Molecular energies in ideal gas. Quantum statistics: Bose Einstein's Distribution law and Fermi Dirac distribution law. Comparison of three statistics.

Course Outcomes: By the end of this course, the student will be able to
C01: recognize the importance of the Laws of Thermodynamics
C02: apply the concepts of Maxwell's relations in various applications
C03: understand the Laws of Radiation
COH: differentiate between Transport phenomenon, classical - quantum statistics

Textbooks:

1. Second Year Physics, Telugu Academy.
2. Heat and Thermodynamics, Brijlal and Subrahamanyam (S.Chand)
3. Heat and Thermodynamics, D.S. Mathur S.Chand \& Company Ltd.
4. Heat and Thermodynamics, Mark W Zemansky, The McGraw-Hill companies
5. Thermodynamics, R.C. Srivastava, Subit K. Saha \& Abhay K. Jain Eastern Economy Edition.
6. Fundamentals of Physics, Halliday/Resnick/Walker.C. Wiley India Edition 2007.

Reference Books:

1. Statistical Physics, F. Reif. The McGraw- Hill Companies.
2. University Physics, Young and Freeman, Pearson Edition, Edition 2005.
3. Engineering Physics, Una Mukherji, Narosa Publishing house.
4. Feynman's Lectures on PhysicsVol. 1,2,3 \& 4. Narosa Publications.
5. Modern Engineering Physics, A.S. Vasudeva. S.Chand \& Co. Publications.

Chairperson

Sentiester II Course Name: Thermal Physics Lab Course Code: PH223P (45 hours - 15 sessions)

Course Objectives: This course is designed to
COB1: enhance the ability to determine thermal conductivity, specific heat and heating efficiency.
COB2: analyze discrepancy in practical and experimental observations and results in comparison to theory

1. Measurement of Stefan's constant.
2. Specific heat of a liquid by applying Newton's law of cooling correction.
3. Coefficient of thermal conductivity of a bad conductor by Lee's method.
4. Heating efficiency of electrical kettle with varying voltages.
5. Thermistor characteristics-Resistance thermometry.
6. To study the variation of therm emf across two junctions of a thermocouple with temperature.
7. Measurement of Curie temperature by study of variation in resistance/capacitance/magnetic phase change with temperature.
8. Specific heat capacity of solids
9. Cooling curve of a metallic body

Course Outcomes: By the end of this course, the student will be able to CO1: acquire skill to determine thermal conductivity, specific heat heating efficiency.
CO2: adapt the comparative studies and understand discrepancy in practical and experimental observations

1. A laboratory manual for undergraduate classes, D.P. Khandelwal, Vani Publishing House, New Delhi.
2. B. Sc Practical Physics, CL Aron Singh, Dr P S Heme, S. Chan \& Company Ltd.
3. B.Sc Practical Physics, Harnam Singh, Dr

Board of Studies in Physics
$\begin{array}{cc}\text { Chairperson } & \text { Board of Studies in fly } \\ \text { EoS in Physics } & \text { Osmania University } \\ \text { of Physics \& Electronics } & \\ \text { Hyderabad - } 500007 \\ \text { HiS. }\end{array}$

BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities And Commerce, Sainikpuri
Autonomous College, Affiliated to OSMANIA UNIVERSITY-
Accredited with 'A' Grade by NAAC B Sc II Year PHYSICS
\section*{(To be implemented for students admitted from2020-21 onwards)}

Semester III Course Name: Electromagnetic Theory Course Code: PH323 (60 Hours)

HPW: 4

CREDITS: 4
Course Objective: The aim of this course is designed to
COB1: infer the concepts of Electrostatics.
COB2: interpret the concepts of Magnetostatics.
COB3: understand the concepts of Electromagnetic induction and properties of electromagnetic waves
COB4: analyze phase relation between current and voltage in R, L, C \& their combinations and the implications

Unit I
(15 hrs)

Electrostatics

Electric field- Concepts of electric field lines and electric flux, Gausslaw (Integral and differential form), application to linear, plane and spherical charge distributions. Conservative nature of electric field, Irrotational field. Electricpotential- Concepts of electricpotentialrelation between electricpotential and electric field, potential energy of a system of charges. Energy density in an electric field. Calculation of potential from electric field for a spherical charge distribution

Unit II

Magnetostatics:

Concept of magnetic field and magnetic flux, Biot-Savart's law, magnetic field induction (B) due to a straight current carrying conductor, Force on a point charge in a magnetic field. Properties of magnetic field induction B, curl and divergence of B, solenoid field. Integral form of Ampere's Law, Applications of Ampere's Law, field due to straight, circular and solenoidal currents. Energy stored in magnetic field. Magnetic energy in terms of current and inductance. Magnetic force between two current carrying conductors. Magnetic field Intensity. Ballistic Galvanometer-Torque on current loop in a uniform magnetic field, working principle of B.G., current and charge sensitivity, electromagnetic damping, critical damping resistance

Board of Studies in Physics
Osmania University
Hyderabad - 500007

Unit III

Electromagnetic induction and Electromagnetic waves Faraday'slawof induction (differential and integral form) -Lenz's law-self and mutualinductance, Continuity equation, modification of Ampere's Law, displacementcurrentMaxwell's equations: Integral and differential form, Maxwell's equations in vacuum and dielectric medium, boundary conditions, Planewave equation, Transversenatureofelectromagneticwaves. velocity of in vacuum and in medium.Poynting theorem.

Unit III
Varying and alternating currents
Growth and decay of current/charge in LR, CR and LCR circuits. Critical damping. Alternating current relation between current and voltage in pure $R, C, L, R L, R C$ and RLC vector diagrams, Power in ac circuits. LCR series and parallel resonant circuit- Qfactor. AC \& DC motors-single phase, three phase (basics only).

Course Outcome: By the end of this course, the student will be able to C01: become cognizant of basics of Electrostatics
C02: explain various concepts of Magnetism
C03: recognize the importance of EMI
CO4: compare phase relation between current and voltage in R, L, C \& their combinations

Semester III Course Name: Electromagnetic theory Lab Course Code: PH323P

(45 Hours - 15 sessions)

HPW: 2

CREDITS: 1
Course Objective: The aim of this course is designed to
COB1: develop hands on experience on electromagnetic related experiments.
COB2: provide insights AC response in LC R circuits.

1. To determine the (a) current sensitivity, (b) charge sensitivity, and (c) Critical Damping Resistance CDR of a B.G.
2. Figure of merit and Voltage sensitivity of a moving coil galvanometer.
3. Conversion of moving coil galvanometer into voltmeter and ammeter.
4. To draw the B-H curve of transformer core and determine magnetic constants \& energy loss.
5. To variation of magnetic field in a solenoid with current, number of turns and distanceusingGauss probe.
6. To study the variation of magnetic field with distance along the axis of a circular coil/Solenoid carrying current by Stewart and Gee's method.
7. Determination of frequency AC source using Sonometer.
8. RC circuit-Determination of time constant
9. LCR series circuit-Determination of resonant frequency and Q -factor

10. LCR parallel circuit-Determination of resonant frequency and Q -factor

Course Outcomes: By the end of this course, the student will be able to
COB1: understand concepts of electromagnetism through electromagnetic related experiments.
COB2: infer AC response in L C R circuits.

Textbooks

1. Third year Physics - Telugu Akademy
2. Electricity and Magnetism by D.N. Vasudeva - S. Chand\&Co.
3. Electricity and Magnetism by A S Mahajan, A. Rangwala - Tata Mc. Graw-Hill Education.
4. Electricity and Magnetism by Brijlal and Subramanyam, - Ratan Prakashan Mandir
5. Berkeley Physics Course-Vol.II- Electricity and Magnetism by Edward M Purcell - The McGraw-Hill Companies.
6. Fundamentals of Electricity and Magnetism by Arthur F. Kip - McGraw-Hill, 1968.
7. Electricity and Magnetism by J. H. Fewkes \& John Yarwood. Vol. I - Oxford Univ. Press, 1991.
8. Introduction to Electrodynamics, 3rd Edition by David J. Griffiths - Benjamin Cummings, 1998.
9. Electricity and Magnetism. By D C Tayal - Himalaya Publishing House, 1988.
10. Electromagnetics by Joseph A. Edminister 2nd ed.- New Delhi - Tata McGraw Hill, 2006.
11. B.Sc Practical Physics by C L Arora - S. Chand \& Company Ltd.
12. B.Sc Practical Physics by Harnam Singh Dr P S Hemne - S. Chand \& Company Ltd.
13. Advanced Practical Physics by B. L. Worsnop and H. T. Flint - Asia Publishing House, New Delhi.
14. A Text Book of Practical Physics by Indu Prakash and Ramakrishna - Kitab Mahal

ReferenceBooks

1. Electricity and Electronics, D.C. Tayal,Himalaya Publishing House.
2. Electricity and Magnetism, C.J. Smith, Edward Arnold Ltd.
3. Electricity, Magnetism with Electronics, K K Tewari. S.Chand \& Co.
4. General Physics by Douglass C Giancoli, Prentice-Hall, Inc, New Jersey.
5. General Physics by Douglass C Giancoli, Pergineers. F.J Ruche. McGraw Hill.
6. Introduction to Physics for Scientists and End

Chairperson
Bos in Physics
of Physics \& Electronics

Dept. of Phy Vivekananda. College
Bnavan's Vivekanand $\begin{gathered}\text { Sainikpuri }\end{gathered}$

Osmania University
Hyderabad - 500007
T.S.

BHAVAN'S VIVEKANANDA COLLEGE
 of Science, Humanities and Commerce, Sainikpuri

Autonomous College | Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
(To be implemented for students admitted from 2020-21 onwards)

Skill Enhancement Course

Semester III Course Name: Experimental Methods and Error Analysis Course Code: SE323

Course Objectives: The course is designed to COB1: familiarize basic of errors and their importance in experiments. . 4 , COB2: introduce the concepts of statistical analysis of errors and their elimination.

```
Unit - I
```

15 Hours
Experimental methods
Least count of instruments, Instruments for measuring mass, length, time, angle, current, voltages. Fundamental units. Precision and accuracy of measurements, source of error in measurements, necessity of estimating errors, types of errors, reading error of instrument, calibration error, random error, systematic error, significant digits, order of magnitude and rounding of numbers, rounding error, absolute and relative errors, errors of computationaddition, subtraction, multiplication, division, error in power and roots, Propagation of errors, analysis of data, standard deviation, calculation of mean value.

15 Hours
Unit - II

Statistical Analysis of errors

Mean, Median, Mode and standard deviation, standard deviation of mean, Least squares fitting, Normal distribution, covariance and correlation, Binomial distribution, passion distribution, chi square test
Course Outcomes: Upon completion of this course student will be able to
C01: implement estimation of errors in measurement of physical quantities.
C02: apply statistical methods to eliminate errors.

Reference Books:

1. The Theory of errors in physical measurements by J C Pal - New central book agency2010.
2. Data reduction and error analysis for the physical science by DK Robinson and $\mathrm{P} R$ Bevington.

Bhavan
 BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri
Autonomous College |Affiliated to Osmania University
Accredited with 'A' Grade by NAAC

(To be implemented for students admitted from 2020-21 onwards) Skill Enhancement Course

Semester III Course Name: Basic Instrumentation Course Code: SE323A (30 Hours)

HPW: 2
CREDITS: 2

Course Objectives: The aim of this course is to
COB1: enable the students to get familiar to basic electrical instruments.
COB2: familiarize signal generators and digital instruments.

Unit - I

15 Hours

Basics of Measurements

Instruments accuracy, precision, sensitivity resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac currentand resistance. Specifications of a multimeter and their significance.

Electronic Voltmeter

Advantages over conventional multimeter for voltage measurement with ? Respect to linput impedance and sensitivity. Principle of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier and rectifier-Amplifier. Block diagram ac millivoltmeter, specifications and their significance.

Cathode Ray Oscilloscope

Block diagram of basic CRO. Construction and Working of CRT, Electron gun, electrostatic focusing and acceleration, brief discussion on screen phosphor, visual persistence and chemical composition. Time base operation, synchronization, front panel controls of a CRO, specifications of a CRO and their significance
Use of CRO for the measurement of dc and ac voltage, frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.

Unit - II

Signal Generators and Analysis Instruments Block diagram, explanation and specifications of low frequency signal generators, pulse generators, and function generator. Brief idea for testing, sspecifications, Distortion factor meter, wave analysis.
Digital Instruments
Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of a digital meter working principlesof a digital meterDigital Multimeter:

Book diagram ind working of'Digital multimeter, Working prineiples of itmo interval, fiequency and period measurements using universal counter/hequency comiter, time-base srability, acemata and resolution.

Course Outcomes: Upon completion of this course student will be able to COI: become acoustomed to use of basic electrical instruments.
CO2: adap the use of signal generators and digital instruments.

Reference B ooks:

1. A text book of Electrical Technology by B L Theryina - S. Chand d Co.
2. Perfomance and design of AC machines by M G Say - ELBS Edn.
3. Digital Cireuits and systems by Venugopal, 2011 - Tata Megraw Hill.
4. Digital Electronics by Subrata Ghoshal, 2012 mpring er.
5. Electronic Deviees and circuits by S .Salivahanan and NS Kumar, $3^{\text {rld }}$., 2012- Tata Mcgraw Hill.
6. Electronic Circuits: Handbook of design and applications by U. Tietze, Ch.Schenik, 2008 - Springer
7. Electronic Devices 7/e by Thomas L Floyd, 2008 - Pearson India

Chairperson
BoS in Physics
Dept. of Physics \& Electronics
Board of Studes in Phystes

Bhavan's Vivekananda Collego
Osmanla Universily
Hyderabad - 500007
sainikpuri

BHAVAN'S VIV akan

of Science, Humanities and Commerce, Sainikpuri
Autonomous College, Affiliated to OSMANIA UNIVERSITY
Accredited with 'A' Grade by NAAC
(To be implemented for students admitted from 2020-21 onwards)
B Sc II Year PHYSICS
Semester IV Course Name: WAVES and OPTICS
Course Code: PH423 (60 Hours)
HPV: 4
CREDITS: 4
Course Objectives: The course is designed to
COB1: explain the fundamental concepts of waves in strings and bars.
COB2: understand the concept of interference.
COB3: infer the concept of diffraction.
COB4: describe methods of polarization and its applications.
Unit I
Waves -Fundamentals of Waves
15 Hours
Transverse wave propagation along a stretched string, general solution of wave equation and its significance, Expression for velocity, modes of vibration of stretched string clamped at both ends, overtones, energy transport, transverse impedance.
Longitudinal vibrations in bars - wave equation and its general solution. Expression for velocity. Special cases (i) bar fixed at both ends ii) bar fixed at the mid point iii) bar free at both ends iv) bar fixed at one end, free at other end.

Unit - II
15 Hours
Interference
Principle of superposition: Coherence, temporal and spatial coherence, conditions for Interference of light
Interference by division of wave front: Young's double slit experiment, Theory of interference. Fresnel's Bi-prism: Determination of wave length of light, determination of thickness of a transparent material using Bi-prism. Change of phase on reflection, Lloyd's mirror experiment.
Interference by division of amplitude:
Oblique incidence of a plane wave on a thin film due to reflected and transmitted light (Cosine law), Colors of thin films.Nonreflecting films, interference by a plane parallel film illuminated by a point source. Interference by a film with two non-parallel reflecting surfaces: Wedge shaped film,determination of diameter of wire. Newton's rings in reflected light with and without contact between lens and glass plate, Newton's rings in transmitted light Determination of wave length of monochromatic light. Michelson's Interferometer: Types of fringes, Determination of wavelength of monochromatic light, Difference in wavelength of sodium D1, D2 lines and thickness of a thin transparent plate.

Chairperson
Bod in Physics Dept. of Physics \& Electronics Bhavan's Vivekananda College

Introduction: Distinction between Fresnel and Fraunhofer diffraction. Fraunhoffer diffraction: Dillaction due to single slit and circular aperture, Limit of resolution. Fraunhoffer diffraction incidence methods by using diffractionation of wave length of light in normal and oblique Fresnel diffraction
Fresnel's half period zones, area of the half period zones. zone plate - Comparison of zone plate with convex lens, Phase reversal zone plate. Diffraction at a straight edge. Distinction between interference and diffraction.

Unit -IV
Polarization

15 Hours

Polarized light: Methods of Polarization, Polarization by reflection, refraction, Double refraction, selective absorption. Scattering of light, Brewster's law, Malus law, Nicol prism: polarizer, analyzer. Refraction of plane wave incident on negative and positive crystalsHagen's explanation. Quarter wave plate and half wave plate. Babinet's compensator: Optical activity. Laurent's half shade polarimeter-Analysis of light.

Course Outcome: By the end of the course, the student will be able to
CO1: apply the concepts of waves in various applications.
CO2: use the acquired information about interference.
CO3: Outline the concept of diffraction.
CO4: get an insight to analyze polarized light.

Semester IV Course Name: Waves and Optics Lab Course Code: PH423P

(45 Hours - 15 sessions)

HPV: 3

CREDITS: 1

Course Objectives: The aim of this course is designed to
COB1: develop hands on experience in experiments based on interference, diffraction and polarization.
COB2: provide insights into concepts of waves and oscillation in strings.

1. Determination of refractive index of a glass and liquid (Boys Method).
2. To obtain the Refractive index of the material of the prism by determining the angle of minimum deviation from I-D curve.
3. Determination of dispersive power of a prism.
4. Determination of thickness of a wire-wedge method.
5. Determination of Radius of curvature of a given convex lens- Newton's rings.
6. Determination of wavelength of light using diffraction grating minimum deviation method.
7. Wavelength of light using diffraction grating - normal incidence method.
8. Determination of wavelength of a givenLaser light using diffraction grating.
9. Study of optical rotation using polarimeter.
10. Verification of Laws of a stretched string (Three Laws).
11. Velocity of Transverse wave along a stretched string
12. Determination of frequency of a bar- Melde's experiment

Course Outcomes: By the end of this course, the student will be able to
COB1: understand concepts of interference, diffraction and polarization through related experiments.
COB2: interpret wave in strings.

Textbooks

1. Second Year Physics - Telugu Akademi
2. Optics by Ajay Ghatak - The McGraw-Hill companies.
3. Optics by Subramanyam and Brijlal - S. Chand \& Co.
4. Optics and Spectroscopy by R. Murugeshan and Kiruthiga Siva Prasath $-S$. Chand \& Co.
5. Fundamentals of Optics by Jenkins A. Francis and White E. Harvey - McGraw Hill Inc.
6. Fundamentals of Physics by Halliday, Resnick, Walker.C - Wiley India Edition 2007.
7. B.Sc Practical Physics by C L Arora - S. Chand \& Co.
8. B.Sc Practical Physics by Harnam Singh, Dr P S Hemne - S. Chand \& Co.
9. B.Sc First year Physics - Telugu Akademi.
10. Waves and Oscillations by N. Subramaniyam and Brijlal - Vikas Publishing House Pvt Ltd.
11. Waves and Oscillations by S. Badami, V. Balasubramanian and K. Rama Reddy - Orient Longman.
12. The Physics of Waves and Oscillations by N K Bajaj - Tata McGraw Hill Company Edition, 2008.

Reference Books

1. Optics by Eugene Hecht and A R Ganesan - Pearson Education India
2. Understanding optics by M K Sinha - Tata McGraw Hill Education Pvt. Ltd.
3. Sears and Zemansky's University Physics by Hugh D. Young, Roger A. Freedman Pearson Education Eleventh Edition.
4. Fundamentals of Physics- An Introduction by Sanat Kumar Chatterjee - Narosa Publications.
5. Feynman's Lectures on Physics Vol. 1,2,3 \& 4-Narosa Publications.
6. Physics Laboratory Manual by David H Loyd - Brooks/cole Ceneage Learning.
7. The Physics of Vibrations and Waves by H. J. Pain - John Wiley and Sons
8. Fundamentals of Physics by Alan Giambattista et al - Tata McGraw Hill Company Edition, 2008.

Chairperson
BoS in Physics
Blectronics
BoS in Physics
Dept. of Physics \&lectronics
Bhavan's Vivekananda College
Sainikpuri

Board of Studies in Physics
Osmania University
Hyderabad - 500007 T.S.

BHAVAN'S VIVEKANANDA COLLEGE
of Science, Humanities and Commerce, Sainikpuri
Autonomous College |Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
(To be implemented for students admitted from 2020-21 onwards)

Skill Enhancement Course

Semester IV Course Name: Electrical Circuit Networking

Course Code: SE423 (30 Hours)
HPW: 2
CREDITS: 2

Course Objectives: The course is designed to
COB1: enable the students to get familiar with basic electrical circuit elements, schematics of electrical drawing, identify current flow and voltage drop.
COB2: provide hands on experience to electrical wiring and types of protection to be employed for electrical circuits.

Unit - I

15 Hours
Basic Electricity Principles
Voltage, Current, Resistance and Power. Ohms law. Series, parallel and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter.
Understanding Electrical circuits
RFIM
Electric circuit elements and their combination. Rules to analyse DC sourced electrical circuits. Current andVoltage drop across the DC circuitelements. Single phase and three phase alternating currentsources. Rules to analyse AC sourced electrical circuits. Inductance, capacitance, and impedance. Real, imaginaryand complex power components of Ac source. Power factor, Saving energy and money.
Electrical Drawing and Symbols
Drawing symbols. Blueprints. Reading Schematics. Ladder diagrams. Electrical schematics. Power circuits, control circuits. Reading of circuitschematics. Tracking the connections of elements and identify current flow and voltage drop.
Generators and Transformers
DC power sources. $\mathrm{AC} / \mathrm{DC}$ generators. Operation of transformers.

Electrical protection
Relays, Fuses and disconnect switches. Circuit breakers. Overload devices. Groundfault protection. Grounding and isolating. Phase reversal surge protection. Interfacing DC or AC source to control elements (Eetayproctoction device)

Electrical wiring

Different types of conductors and cable. Basic of wiring- starand delta connection. Voltage drops and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts and solder. Preparation of extension board.

Course Outcomes: Upon completion of this course student will be able to CO1: understand basic electrical circuit elements, schematics of electrical drawing, current flow and voltage drop.
CO2: to understand basic electrical wiring and types of protection for electrical circuits.

References Books:

1. A text book of Electrical Technology by B L Theraja - S Chand \& Co.
2. A text book of Electrical Technology by A K Theraja
3. Performance and design of AC machines by M G Say - ELBS Edn.

Chairperson BoS in Physics
Dept. of Physics \& Electronics Bhavan's Vivekananda College Sainikpuri

 Bhavan
 BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri
Autonomous College | Affiliated to Osmania University
Accredited with ' A ' Grade by NAAC
(To be implemented for students admitted from 2020-21 onwards)
Skill Enhancement Course

Semester IV Course Name: Circuit Simulation using PSPICE
 Course Code: SE 423A

HPV: 2

Course Objective: The objective of this course is to COB1: familiarize the students with Spice simulation package.

Unit - I

15 Hours
Introduction to KVL and KCL - applying KVL and KCL to simple D.C Networks. Introduction to PSpice Simulation -opening, saving and closing the Schematic files - Tool bars - Selection of Components, placing the components on the schematic, drawing and labelling wires, series and parallel connections, placing the D.C and A.C sources and ground symbols, setting up analyses, simulation of circuit, viewing results, viewing bias point voltages and currents, showing voltages and currents.

Unit - II

(1.5 Iflour̀s
Analysis - D.C sweep, A.C Sweep and Transient analysis. Simulation of V - I characteristics of a Resistor with D.C source, RC transient and frequency response, RLC series and parallel circuits with A.C source. V-I characteristics of a $p-n$ junction diode static and dynamic resistance calculations. Digital logic gates - verification of truth tables.

Course Outcome: Students will learn

CO1: usage of virtual components and instruments
CO2: to make simulated measurements. They will become proficient in designing and testing simple Digital and Analog circuits.

Recommended Books:

1. Introduction to PSpice using Oread circuits and Electronics by Mohammad H Rashid PHI Learning.
2. Spice for circuits and Electronics using Spice by Mohammad H Rashly - ${ }^{-1} \mathrm{PHI}$ Learning.

bhavan

or hivekananda college
of Science, Humanities and Commerce, Sainikpur
Autonomous College | Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
(To be implemented for students admitted from 2020-21 onwards)

Semester IV Course Skill Enhancement Course

Course Code: SE423B

HPW: 2

Course Objectives: The aim of this course is designed to
COB1: describe the physics involved in the function of major body syztem
COB2: provide insights into the measurement of biological non-electrical paramaters
COB3: understand the acquisition and analysis of electrical parameters axoociated with mapor body system.
COB4: understand the imaging modalities and their analysis

Unit - I
15 Hours
Fundamentals of Biomedical Engineering
Cell and its structure -Resting and Action Potential - Nervous System and its fundamentals . Basic Components of abiomedical System -Cardiovascular System - Respiratory SystemsKidneyand Blood Flow - Biomechanics of Bone - Biomechanics of Soft Tissues - Basic Mechanics of Spinal Column and Limbs - Physiological Signals and Transducers -Transducers- Selection Criteria - Piezoelectric, Ultrasonic Transducet - Temperature Measurements - Fibre Optic Temperature Sensors.

Non-Electrical Parameters Measurement and Diagnostic Procedures
Measurement of Blood Pressure - Cardiac Output - Heart Rate - Heart Sound - Pulmonary Function Measurements - Spirometer - Photo Plethysmography, Body Plethysmography . Blood Gas Analyzers, pHof Blood - Measurement of Blood pCO2 pO2 - Finger-tip Oximeter, ESR, GSR Measurements

Unit - II

15 Hours
Electrical Parameters Acquisition and Analysis
Electrodes - Limbo Electrodes - Floating Electrodes - Pre-Gelled Disposable Electrodes . Micro Needle and Surface Electrodes -Amplifiers Preamplifiers, Differential Amplifiers, Chopper Amplifier, Isolation Amplifiers ECG-EEG-EMG- ERG- Lead Systems and Recording Methods -Typical Waveforms - Electrical Safety in Medical Environment, Shock Hazards- Leakage Current - Instruments for Checking Safety Parameters of Biomedical Equipment's.

Imaging Modalities and Analysis

Radiographic and fluoroscopy techniques - Computer tomography - MRI -Ultrasonography Endoscopy -Thermography - Different types of biotelemetry systems -Retinal imaging Imaging applications in Biometric systems- Analysis of digital images.

Life Assisting, Therapeutic and Robotic Devices

Pacemakers - Defibrillators - Ventilators - Nerve and muscle stimulators - Diathermy Heart - Lung machine - Audio meters - Dialysers - Lithotripsy - ICCU patient monitoring system - Nano Robots - Robotic surgery - Advanced 3D surgical techniques - Orthopedic prostheses fixation. Simulations on synthesis and characterization of nano materials

Course Outcomes: By the end of this course, the student will be able to
C01: infer physics involved in the function of major body system.
C02: be able to measure biological non-electrical parameters
C03: gain knowledge of electrical parameters associated with major body system parameters
CO3: comprehend the imaging modalities

Reference Books:

1. Handbook of Biomedical instrumentation by R. S.Khandpur - Tata McGraw Hill
2. Medical Instrumentation Application and Design by J. G. Webster - John Wiley and Sons
3. Introduction to Biomedical Equipment Technology by Joseph J Carr, John M. Brown Pearson Education, Inc.

Bhavar

BHAVAN'S VIVEKANANDA COLLEGE
of Science, Humanities and Commerce, Sainikpuri
Autonomous College | Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
B Sc III Year Physics
W.e.f the academic year: 2022-23

Semester V Course Name: Modern Physics Course Code: PH523A (60 hours) (DSE)

HPW: 4

Course Objectives: The aim of this course is designed to
COB1: introduce the concept of dual nature of light and matter leading to the incorporation of particle properties ofmatterinto wave equation and alsoexplain theapplicationof Schrodinger wave equation to evaluate the expectation values
COB2: introduce the basic crystal structures, Diffraction of x-rays by crystals and explain the characteristics of crystals based on the type of bonding
COB3: introduce the nuclear structure and models with an emphasis on Binding energy and explain the process of alpha and beta decay and the working principle of certain counters
COB4: introduce to the students the concept of spin and space quantization leading to a new set of quantum numbers and also explain the possible transitions and motions giving rise to Atomic and molecular spectra

Unit - I: Quantum Mechanics
20 Hours
Particle properties of wave and Matter waves:
Inadequacy of classical Physics. Photoelectric effect - Einstein's photoelectric equation. Compton's effect - experimental verification.
De- Broglie's hypothesis: Matter waves, properties of matter waves, Phase and Group velocities. Davisson and Germer experiment, double slit experiment. Consequences of de-Broglie theory.

Uncertainty Principle and Wave Mechanics:

Heisenberg's uncertainty principle for position and momentum ($x \& p_{x}$), Energy and time (E\& t); Experimental verifications: Gamma ray microscope, Diffraction by a single slit. Applications: Position of electron in a Bohr's orbit.
Schrodinger time independent and time dependent wave equations. Wave function properties and Significance. Basic postulates of quantum mechanics. Expectation values and Normalization of wave function. Applications: Particle in a box (one dimension)

BoS in Physics Dept. of Physics \& Electronilege Bhavan's Vivekanand

Board of Studies in Physics
Osmania University
Hyderabad - 500007
T.S.

Unit - II: Solid State Physics \& Crystallography

Crystal Physics and diffraction:

14 Hours
Amorphous and Crystalline nature of matter. Unit Cell and Space Lattice. Elements of Symmetry. Crystal systems and Bravais lattices. Miller indices. Simple crystal structures: (NaCl and CsCl).
Diffraction of X -rays by crystals: Bragg's law Experimental techniques: Laue's method and powder diffraction method
Bonding in Crystals:
Types of bonding in crystals: Characteristics of crystals with different bonding. Lattice energy of ionic crystals. Determination of Madelung's Constant for NaCl crystal. Determination of Born's repulsive coefficient and repulsive exponent. Born - Haber cycle

Unit - III: Nuclear Physics

12 Hours
Nuclear Structure: Basic properties of nucleus - size, charge, mass, spin, magnetic dipole moment and electric quadrupole moment. Semi empirical mass formula. Binding energy of nucleus, deuteron binding energy, nuclear forces. Nuclear models- liquid drop model, shell model.
Alpha and Beta Decays: Range of alpha particles, Geiger - Nuttal law. Gammow's theory of alpha decay. Geiger - Nuttal law from Gammow's theory. Beta spectrum neutrino hypothesis
Particle Detectors: GM counter, proportional counter, scintillation counter

Unit - 1V: Spectroscopy

14 Hours
Atomic Spectra: Introduction - Drawbacks of Bohr's atomic model - Sommerfeld's orbits -relativistic correction (Qualitative). Stern \& Gerlach experiment, Vector atom model. L-S and jj coupling schemes. Spectral terms, selection rules, intensity rules. Alkali Spectra, doublet fine structure. Zeeman Effect (Classical theory), Paschen-Back Effect and Stark Effect. (Basic idea)
Molecular Spectroscopy: Types of molecular spectra, pure rotational energies and spectrum of diatomic molecule. Determination of inter nuclear distance. Vibrationalelectronic energies and spectrum of diatomic molecule. Ramen effect, classical theory of Ramen effect. Experimental arrangement for Ramen effect and its applications.

Course Outcomes: Having done the course, the student gains sufficient knowledge as to
CO1: relate the complementary nature of the wave and particle properties of a material particle and evaluate the measurable properties of any given system with a specified potential by applying the Schrödinger's wave equation
CO2: study the dependence of various properties of solids on the structure of the crystal and relate the characteristics of crystals with the type of bonding
CO3: determine the Binding energy of a given nuclei by gaining an insight to nuclear structure and models and interpret Radioactive decay in terms of quantum mechanical tunnelling
CO4: relate the probable interactions between matter and electromagnetic radiation leading to different nuclear reactions

BoD in Physics
Dept. of Physics \& Electronics Bhavan's Vivekananda College sainikpuri

Textbooks

1. Concepts of Modern Physics by Arthur Beiser - Tata McGraw-Hill Edition.
2. Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath - S. Chand \& Co.
3. Third Year Physics - Telugu Akademi.
4. Introduction to Solid State Physics by Charles Kittel - John Wiley and Sons.
5. Solid State Physics by SL Gupta \& Kumar V- K Nath \& Co.
6. Molecular Structure and Spectroscopy by G. Aruldhas - Eastern Economy Edition.
7. Elements of Solid-State Physics by J.P. Srivastava - PHI Learning.
8. Modern Physics by G. Aruldhas \& P. Rajagopal - Eastern Economy Edition.
9. Nuclear Physics an introduction by S.B. Patil - Wiley Eastern Limited
10. Nuclear Physics by D.C. Tayal - Himalaya Publishing House.

Reference Books

1. A Text book of Quantum Mechanics by P.M. Mathews \& K. Venkatesan, 2nd Ed., 2010McGraw Hill.
2. Quantum Mechanics by Robert Eisberg and Robert Resnick, $2^{\text {nd }}$ Ed., 2002 - Wiley.
3. Quantum Mechanics by Leonard I. Schiff, 3rdEdn. 2010-Tata McGraw Hill.
4. Introduction to Quantum Mechanics by David J. Griffith, 2nd Ed. 2005 - Pearson Education.
5. Introduction to Solids by Modern Physics by Leonid V. Azaroff - Tata McGraw Hill.
6. Modern Physics by G. Aruldhas \& P. Rajagopal - Eastern Economy Edition. ${ }^{\text {. }}$
7. Fundamentals of Molecular Spectroscopy by C.N. Banwel - Tata McGraw-Hill Edition.
8. Nuclear Physics by Irving Kaplan - Narosa Publishing House.
9. Nuclear Physics theory and experiment by Roy and Nigam - New Age Publishers

Chairperson
BoS in Physics
Dent. of Physics \& Electronics
Enav. - Vivekananda College
Enavi ' \quad sdintikpuri

Board of Studies in Physics
Osmania University
Hyderabad - 500007 T.S.

Course Objectives: The aim of this course is designed to make the student to
COB1: perform the experiment and determine certain universal constants such as Plank's constant, Rydberg's constant and Boltzmann's constant and verify their values
COB2: study the characteristics of GM Counter and identify the radioactive particle

1. Determination of Planck's constant (photocell)
2. Study of photo electric effect: photo current versus wavelength and intensity of incident light
3. e/m of an electron by Thomson method
4. To study the quantum tunnelling effect with solid state device, e.g. tunnel diode
5. Determination of Boltzmann constants using V-I characteristics of junction diode.
6. To determine the magnetic field by Hall-probe method
7. To determine the energy gap of a semiconductor
8. To determine the Rydberg's constant using Hydrogen spectra.
9. To determine the absorption lines in the rotational spectrum of Iodine vapour
10. To determine the ionization potential of mercury
11. Characteristics of $\mathrm{G} M$ Counter.
12. Study of absorption of β and γ rays using G M Counter
13. To find the half-life period of a given radioactive substance using a G.M. Counter.
14. To determine the Planck's constant using LEDs of at least 4 different colours.
15. To determine the wavelength of laser source using diffraction of single slit

Course Outcomes: By the end of the course, the student should
CO1: determine and verify the values of certain Universal Constants and also study and analyse the underlying Physical phenomena observed
CO2: identify the radioactive particle by studying the characteristics of GM Counter and determine the Half- life periods

Textbooks

1. B.Sc Practical Physics by C L Arora - S.Chand \& Company Ltd.
2. B. Sc Practical Physics by Harnam Singh and Dr P S Hemne - S. Chand \& Company
3. A Text Book of Practical Physics by Indu Prakash and Ramakrishna, 11th Ed., 2011 Kitab Mahal, New Delhi

Reference Books

1. Advanced Practical Physics for students by B.L. Flint \& H.T. Worsnop, 1971 - Asia Publishing House.
2. A laboratory manual for undergraduate classes by D.P. Khandelwal - Vani Publishing House, New Delhi.
3. Advanced level Physics Practicals by Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985 - Heinemann Educational Publishers

Board of Studies in Physics
Osmania University
Hyderabad-500007
T.S.

BHAVAN'S VIVEKANANDA COLLEGE
 of Science, Humanities and Commerce Sainikpuri

 Autonomous College, Affiliated to OSMANIA UNIVERSITYAceredited with 'A' Grade by NAAC
13 Se III Year PHYSICS

W.e.f the academic year: 2022-23

Semester V Course Name: Computational Physies Course Code: PH523B (60 Hours)

Course Objectives: This course is designed to COB I: introduce to the students the basicsof C language programming. COB 2: introduce to the students the concept of numerical methods of analysis COB 3: explain various types of distribution and methods to © © COB 4: introduce to the students the simple concepts of computational methods

Unit I

15 Hours
Programming in C
Flow charts, algorithms, Integer and floating-point arithmetic, precision, Variable types, Arithmetic statements, Input and Output statements, Control statements, Executable and non-executable statements, arrays, Repetitive and logical structures, Subroutines and functions, Operation with files, Operating Systems, Creation of executable programs.

Unit II

15 Hours
Numerical Methods of Analysis
Solution of algebraic and transcendental equations, Iterative, Bisection and NewtonRaphson methods, Solution of simultaneous linear equations, Matrix inversion method.

Interpolation

Newton and Lagrange formulae, Numerical differentiation, Numerical integration, Trapezoidal, Simpson and Gaussian Quadrature methods, Least square curve fitting, Straight line and Polynomial fits.

Unit III

15 Hours
Numerical solution of ordinary differential equations: Euler's and Runge-Kutta methods, Simulation
Generation of uniformly distributed random integers, Statistical tests of randomness. Monte-Carlo evaluation of integrals and error analysis, non-uniform probability distributions, Importance of sampling, Rejection method.

BoS in Physics
Of Phen

pept. of Physics \& Elec College
Bhavan's Vivekanand
Board of Studies in Physics
Osmania University Hyderabad-500007

Metropolis algorithm, Molecular diffusion and Brownian motions as random walk problems and their Monte Carlo simulation.
Finite element and finite difference methods,boundary value and initial value problems, density functional methods.

Note: Problems should be solved at the end of every chapter of all units
Course Outcomes: By the completion of this course, students should to C01: remember the concepts of C language programming
C02: analyze various Numerical methods
C03: distinguish different numerical methods of solutions
C04: understand the concepts of algorithm, Brownian motions etc.

Recommended Books:

1. Computational methods in Physics and Engineering by Samuel S M Wong World Scientific Publishing Company.
2. Computer Oriented Numerical methods by V. Rajaraman - PHI learning private limited.
3. Computer Programming in FORTRAN77 by V. Rajaraman - PHI learning private limited.
4. Applied Numerical Analysis by Curtis F. Gerald, Patrick O. Wheatley, Addison - Wesley Publishing Company.
5. A Guide to Monte Carlo Simulations in Statistical Physics by Landau D. \& Binder - Cambridge University Press.

Chairperson
BoS in Physics
Dept. of Physics \& Electronics Bhavan's Vivekananda College

Sainikpuri

Semester V Course Name: Computational Physics Lab Course Code: PH523B P

 (DEE)(45 Hours - 15 sessions)
CREDIT: 1

HPV: 3

Course Objectives: This course is designed to
COB1: interpret various numerical techniques; hence augment reasoning and analytical abilities.
COB2: apply numerical techniques in understanding theoretical concepts

1. Jacobi Method of Matrix diagonalization
2. Solution of Transcendental or Polynomial equations by the Newton Raphson method
3. Linear curve fitting and calculation of linear correlation coefficients
4. Matrix Simulation: Subtraction and Multiplication.
5. Matrix Inversion and solution of simultaneous equations
6. Lagrange interpolation based on given input data
7. Numerical integration using the Simpson's method.
8. Numerical integration using the Gaussian Quadrature method.
9. Solution of first order Differential Equation using Runge-Kutta method.
10. Numerical first order differentiation of a given function.
11. Fast Fourier transform
12. Monte Carlo Integration
13. Use of a package for data generation and graph plotting.
14. Test of Randomness for random numbers generators.

Course Outcomes: By the end of this course, the student will be able to
C01: acquire skill of interpreting various numerical techniques.
CO2: perceive numerical techniques in understanding theoretical concepts

chairperson
Board of Studies in Phys
Osmania University

Bhan
 Bhavan
 BHAVAN'S VIVEKANANDA COLLEGE

Of Science, Humanities and Commerce, Sainikpuri
Autonomous College, Affiliated to OSMANIA UNIVERSITY-
Accredited with 'A' Grade by NAAC
B Sc III Year PHYSICS
W.e.f the academic year: 2022-23
Somester V Course Name: Renewable Energy and Energy Harvesting Course Code: GE523
(60 Hours)

Generic Elective

HPW: 4

CREDITS: 4

Comse Objectives: The course is designed to
COBI: bring awareness regarding the necessity of alternate energy sources.
COB2: impart knowledge about wind and bio-mass energy.
COB3: introduce concepts of solar energy and its applications
COB4: divulge finndamentals of thermal and ocean energy,
Unit-I
(f an Physics
10 Hours
Non-renewable energy and renewableenergy resources
Non-tenewable energy resources-Principles of power generation and transmission. A model of conventional thernal power plant. Advantages of conventional power plans.Fossilfuelsandnuclearenergy,their limitation. Introduction to nonconventionalenergysources.
HydroEnergy: Hydropowerresources,hydropowertechnologies,environmentalimpact oftydro power sources.

Unit - II
15 Hours
Wind and Bio mass Energy
WindEnergy harvesting: FundamentalsofWindenergy,WindTurbinesanddifferent electrical machines in wind turbines, Power in wind, electronic interfaces,and sridi intercomnection topologies.
Principles of Bio Conversion, Energy from waste, types of bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, LPG, and CNG

Solar energy storage and its Applications
Solar encrgy: Solarenergy, itsimportance,storageofsolarenergy,solarpond,nonconvectivesolar pond,applications ofsolar pondand solarenergy, solarwater heater,
flat platecollector,solardistillation,solarcooker,solargreenhouses, solarcell absorption airconditioning. Needandcharacteristicsofphotovoltaic(PV)systems, PV modelsand equivalent circuits, and sun trackingsystems. Simulations on solar thermal systems

Unit - IV
15 Houn
Geothermal and ocean Energy
Resources, types of wells, methods of hamessing the energy, potential in India. OTEC, principles of utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy, Potential and conversion techniques, mini-hydel powet plants, land and their economics.
Carboncaptured technologies, cell, batteries, power consumption. Environmentalissues and Renewablesources of energy, sustainability.

Course Outcomes: By the completion of this course, students should
CO1: understand necessity of alternate energy soirces and conservation of conventional energy.
CO2: impart knowledge about wind and bio-mass energy
CO3: know importance of solar energy and its applications
CO4: outline importance of usage of thermal and occan energy

ReferenceB ooks:

1. Non-conventional energy sources by B.H. Khan - McGraw Hill
2. Solar energy by Suhas P Sukhative - Tata McGraw -Hill Publishing Company Ltd.
3. Renewable Energy - Power for a sustainable future by GodfreyBoylc. $3^{\text {rd }}$ Edn. 2012,Oxford UniversityPress.
4. Solar Energy: Resource Assesment Handbook by P Jayakumar, 2009
5. Photovoltaics by J. Balfour, M.Shaw and S. Jarosek. Lawrence J Goodrich (USA).

BoS in Physics
Dept. of Physics \& Electronics
Bhavan's Vivekananda Collegs
Sainikpuri

BHAVAN Vive Baval
 Blawaln
 BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri
Autonomous College, Affiliated to OSMANIA UNIVERSITY
Accredited with 'A' Grade by NAAC

B Sc III Year PHYSICS

W.e.f the academic year: 2022-23

Semester VI Course Name: Electronics Course Code: PH 623A (60hours)
HPW: 4

CREDITS: 4

Course Objectives: This course is designed to
COB1: introduce the concepts of classification of Band theory of solids.
 applications.
COB3: distinguish the conversion methods of various number systems \& perform different binary arithmetic operations
COB4: examine the operations of various Logic gates and Combinational circuits

Unit - I

15 Hours
Band theory of Solids
Energy bands in Solids (band theory), valence band, conduction band and forbidden energy gap in solids, insulators, Semiconductors - intrinsic semiconductors and extrinsic semiconductors (ntype, p-type), Fermi level, continuity equation.

Diodes

$\mathrm{p}-\mathrm{n}$ junction diode, Half wave, Full wave rectifiers and Bridge rectifier. Characteristics of Zener diode and its application as voltage regulator.

Unit - II

Hours

Transistors
PNP and NPN transistors, current components in transistors (Two port model), CB, CE and CC zonfigurations, Transistor as an amplifier, RC coupled amplifier- frequency response Qualitative analysis)
Feedback Concept \& Oscillators
Concept of feedback, Concept of Oscillator, Barkhausen's criteria and Phase Shift Oscillator Expression for frequency of oscillation.

Unit -III

Electronic devices

Construction, working and characteristics: Photo diode-Shockley diode- Solar cell, Optozouplers. Field Effect Transistor (FET) - FET as an Amplifier- Uni Junction Transistor UJT), UJT as a relaxation oscillator- Silicon Controlled Rectifier (SCR) - SCR as a ;witch.

BoS in Physics Dept. of Physics \& Elallege Bhavan's Vivekananda College

Board of Studies in Physics
Osmania University
Hyderabad - 500007

Binary number system: Conversion of Binary to Decimal and vice versa, Binary addition and subtraction (1 's and 2's complement methods). Hexadecimal number system. Conversion from Binary to Hexadecimal and vice versa. Decimal to Hexadecimal and vice versa.
gates
$O R, A N D, N O T$ gates, truth tables, realization of these gates using discrete components. NAND, NOR as universal gates, Exclusive - OR gate, De Morgan's Laws-Statement and Proof, Half and Full adders.

Course Outcomes: By the end of the course, the student should
C01: learn the basics of band theory of solids
CO2: understand the working principle, applications of Transistors and concepts of feedback.
C03: be able to comprehend fundamental concepts of FET, UJT and SCR
C04: apply conversion methods of various number systems \& perform different binary arithmetic operations and also apply knowledge of various Logic gates and Combinational circuits in various applications

Textbooks

1. Third year Physics - Telugu Akademi
2. Electricity and Electronics by D.C. Tayal - Himalaya Publishing House.
3. Electronic devices and circuits by Millman and Halkias - Mc.Graw-Hill Education.
4. Principles of Electronics by V K Mehta and Rohit Mehta - S.Chand \& Company Ltd.
5. Digital Principles \& Applications by A.P.Malvino and D.P.Leach - McGraw Hill Education.
6. Digital logic and computer design by Morris Mano - Pearson

Reference Books

1. Fundamentals of Physics by Halliday, Resnick, Walker - Wiley India Edition 2007.
2. Electricity, Magnetism with Electronics by K K Tewari - .S.Chand \& Co.
3. General Physics by Douglass C Giancoli - Prentice-Hall, INC, New Jersey.

Chairperson Bod in Physics Dept. of Physics \& Electronics Bhavan's Vivekananda College Sainikpuri

Board of Studies in Physics
Osmania University
Hyderabad - 500007
TS.

Course Objectives: This course is designed to
COB1: improve skill of measuring VI characteristics of semiconductor devices.
COB2: interpret the working of various Logic gates and Combinational circuits

1. V-I Characteristics of a Junction diode
2. V-I Characteristics of Zener diode
3. Zener diode as voltage regulator
4. Input and Output Characteristics of Transistor in CE configuration.
5. RC coupled Amplifier- frequency response
6. RC Phase Shift Oscillator- determination of frequency
7. Construction of a Model DC Power Supply
8. Basic gates construction using discrete components-Verification of truth tables.
9. Construction of universal gates using discrete components- Verification of truth'tables.
10. Basic gates construction using universal gates-Verification of truth tables.
11. Half and Full adder circuits
12. Verification of De Morgan's laws.

Course Outcomes: By the end of the course, the student should
C01: be able to comprehend theoretical concepts of diode, transistors, FET, UJT and SCR with experimental measurements
C02: apply knowledge of various Logic gates and Combinational circuits in various applications

Recommended Books:

1. B.Sc Practical Physics by C L Arora - S.CHAND \& Company Ltd.
2. B.Sc Practical Physics by Harnam Singh and Dr P S Hemne - S. Chand \& Company Ltd.

Chairperson
Bos in Physics
Dept. of Physics \& Electronics
Dept. of Physics s. Elech College
Bhavan's Vivekananda
Sainikpuri
Sainikpuri
 \section*{(8) Bhaval
 \section*{(8) Bhaval
 VIVEKANANDA COLLEGE}

of Science, Humanities and Commerce, Sainikpuri
> Autonomous College, Affiliated to OSMANIA UNIVERSITY

Accredited with ' \wedge ' Grade by NA AC

13 Se Ill Year PIIYSICS

W.e.f the academic year: 2022-23

Course Name: Applied Optics \quad 2022-23
Course Code: Plla23B (60 Hours)
(DEE)

CREDITS: 4

HPV: 4

Course Objectives: The course is designed to
COB1: explain the principle of lasers and construction of lasers.
COB2: explain the construction and reconstruction of Holograms and applications.
COB3: introduce concepts of Fourier optics
COB4: establish basic concepts involved in optical fibers

Unit - I

Principles of Lasers
Introduction, Emission and absorption of Radiation-Einstein coefficients, Pumping mechanismsoptical feedback- Laser rate equations for two, three and four level lasers. Pumping threshold conditions, Properties of laser beams. Types of Lasers: Gas, Liquid and Solid Lasers, He-Ne and Argon lasers with energy level schemes, Ruby laser and YAG laser. Ga-As laser,' Applications of lasers.

Unit - II

15 Hours
Holography
Basic Principle of Holography - Recording of amplitude and phase- The recording mediumReconstruction of original wave front- Image formation by wave front reconstruction, Gator hologram and its limitations, Off axis Hologram- Fourier transform Holograms- Volume Holograms, Holography applications.

Unit - III

15 Hours

Fourier and Non-Linear Optics

Fourier Optics- Thin lens as phase transformation- Thickness function- Various types of lenses - Fouriertransforming properties of lenses - Object placed in front of the lens-
Object placed behind the lens.
Non-linearOptics: Harmonic generation- Second harmonic generation- Phase matching condition-nOptical mixing- Parametric generation of light- self focusing of light.

Unit - IV

15 Hours
Optical fibers
Fiber types and their structures. Ray Optics representation, acceptance angle and numerical aperture. Stepand Gradedindex fibers, single and multi-mode fibers. Fiber materials for glass fibers and plastic fibers. Signal attenuation in optical fibers: Absorption, scattering and bending losses in fibers, core and cladding losses. Material dispersion, wave guided dispersion, inter modes distortion and pulse broadening.

Course Outcomes: By the completion of this course, students should C01: interpret the concepts of lasers.
C02: record and reconstruct holographic image.
c03: differentiate between Fourier Optics and Non-linear Optics C04: understand the concepts offiber optics

Recommended Books:

1. Introduction to Fourier Optics by J. Goodman - Roberts and Company Publishers
2. Optical fiber Communications by John M senior - Pearson Education
3. Principles of Lasers by O Svelto - Springer Science \& Business Media
4. Introduction to Modern Optics by Grant R. Fowles - Courier Corporation
5. Principles of Optics by Born and Wolf- Cambridge University Press
6. Fundamentals of Optics by Jenkins \& White - McGraw Hill Education

Semester VI

HPW: 3

Course Name: Applied Optics Lab
(45 Hours - 15 sessions)

Course Code: PH623BP
CREDITS: 1

Course Objectives: The course is designed to
COB1: increase the skill of using lasers for diffraction applications.
COB2: develop skill of measurements of Numerical Aperture and losses in optical fibers.

1. Study of the profile of a laser beam
2. Determination of the diameter of a thin wire using laser
3. Determination of wave length of $\mathrm{He}-\mathrm{Ne}$ laser by transmission grating
4. Construction and recording of a hologram.
5. Study of Fourier transforming properties of lenses
6. Study of second harmonic generation by KDP crystal.
7. Measurement of numerical aperture of optical fibers
8. Measurement of coupling losses in optical fibers
9. Measurement of bending losses in optical fibers
10. Study of audio signal transmission through optical fibers
11. To study the interference of light using optical fibers

Course Outcomes: By the completion of this course, students should
C01: be able to use laser source for diffraction applications.
CO2: comprehend measurements of Numerical aperture and losses in optical fibers.

BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities And Commerce, Sainikpuri

Autonomous College, Affiliated to OSMANIA UNIVERSITY
Accredited with ' A ' Grade by NAAC

B Sc III Year PHYSICS

W.e.f the academic year: 2022-23

Semester VI Course Name: Nano Science Course Code: PH 62,30
(60) 0 ours)

Optional Paper

HPW: 4
CREDITS: 4
Course Objectives: The course is designed to COB1: introduce fundamentals of nanostructures.
COB2: explain physical and chemical synthesis methods.
COB3: introduce characterization techniques for nanomaterials
COB4: divulge applications of nanomaterials

Unit - I

15 Hours
Length scales in Physics, Nanostructures: 1D 2D 3D nanostructures (nanodots, nano wires, nanorods) Band structure and density of states of materials at nanoscales, Size effects in nanosystems, Quantum confinement in 1D 2D 3D nanostructures and its consequences.

Unit - II

15 Hours

SYNTHESIS OF NANOSTRUCTURED MATERIALS

Top down and bottom up approach, photolithography, ball milling, gas phase condensation, vacuum deposition, physical vapour deposition (PVD), thermal evaporation, E-beam evaporation, pulsed laser deposition, chemical vapour deposition,Sol-Gel,Electrode position, Spray pyrolysis, hydrothermal synthesis, preparation through colloidal methods, MBE growth of quantum dots.

Unit - III
15 Hours
CHARACTERIZATION
X-ray Diffraction, Optical Microscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy,

Dept. of Physics \& Electronics Bhavan's Vivekananda Colloge Sainlkpurl

Osmania Unwersty
Hyderabat - 500007
T.S.

Applications of nanoparticles, Quantum dots, nanowire and thin films for photonic devices (LED, solar cells)Single electron devices (no derivation) CNT based transistors, Nano material devices: Quantum dots heterostructures lasersoptical switching and optical data storage,Magnetic Quantum well; magnetic dots-magnetic data storage.Micro Electrochemical systems (MEMS) Nano Electromechanical systems (NEMS)

Note: Problems should be solved at the end of every chapter of all units.
Students will be provided hands on experience of at least one synthesis methods

Course Outcome: By the completion of this course, students should to
C01: interpret the length scales and hence nano size.
C02: understand different nano material synthesis methods.
C03: learn nano material characterization techniques
C04: recognize importance of namo material applications

Text Books:

1. Introduction to Nanotechnology by Charles P. Poole and Frank J Owens - Wiley India Pvt. Ltd.
2. Introduction to Nano Science and Technology by K.K. Chattopadhyay \& A.N. Banerjee - PHI Learning Private Limited
3. Nanotechnology: Principle and Practice sby S. K Kulkarni - Capital Publishing Company
4. Nanotechnology by Richard Booker and Earl Boysen - John Wiley and Sons
5. Handbook of Nanotechnology by Bharat Bhushan - Springer
6. Material Characterization Techniques by Sam Zhang, Lin Li and Ashok Kumar - CRC Press

Cnairperson
BOS in Physics
Dept. of Physics \& Electronics Bhavan's Vivekanand

- Bhavan

BHAVAN'S NTVEKAVANDA COLLEGE
of Science Humanities mid Commerce. Suminguri Aunocmous College A Finest on Onmuria litiversing

Acroetore with - A" Grate or MAC
Sollater-B ScsI Year PHySICS

$$
\text { Wei the academic year: } 2102-23
$$

vT

Course Name: Project Work Course Code PH 623_O_ PW (NUTs)

Optimal Piper
purse Objectives: The course is designed to

032 orgatibe the completed wort in the form of proper Ensertutive cull submissive

1. Basic concepts of Project planting
a) Selection of Project topic and defining objectives
b) Planning of methods approaches
2. Guidelines for Project writing

- Title of the Project Name of the Student: \& Supervise
- Declaration by the Student \&Supervisor
- Objectives of the project
- Introduction \& Review of Literature
- Methodology
- Results and Discussion
- Conclusion
- References

Guide lines to the students:

1. Project work will involve experimental work data collection and it has to be completed in the stipulated time by the student.
2. Students will be asked their choice for Project work at the beginning of Semester VI and all formalities of topic and mentor selection will be completed. Project work will be offered as per the expertise and infrastructural facilities available in the department.
3. Project work may be allotted to students as individual or as group project (not exceeding 5 students per group).
4. The completed work and compiled data would be presented in the form of results and submitted in the form of a dissertation/project report.
5. Final evaluation of the project work will be through a panel consisting of internal and external examiners.

Guidelines provided for execution and evaluation of project work would be strictly adhered.
The grading would be based on evaluation of punctuality, experimental work, record keeping, academic inputs, data presentation, interpretation etc.

Course Outcomes: At the end of the course, students will be able to C01: plan and execute a project effectively in the stipulated time C02: develop analytical, paper writing and oral presentation skills.

PROJECT WORK EVALUATION SCHEME

Presentation of Thesis Dissertation to External Examiner- 70 Marks
Continuous Evaluation by the Internal Examiner - 30 Marks
Total - 100 Marks

Chairperson
BoS in Physics
Dept. of Physics \& Electronics
Board of STudies in Physics
Osmania University
Hyderabad - 500007

Bhavan's Vivekananda College
Sainikpuri

Bhavait BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri

Autonomous College \mid Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
W.e.f the academic year: 2023-24

Value Added Course
Course Name: Radiation Safety
Course Code: PH_VAC_RS
(30 hours)

HPV: 2

Credits: 02

Course Objectives: The aim of this course is designed to CO1: infer knowledge about Nuclear radiations and their interactions with matter. CO2: understand the working principle of various detectors and safety measurements.

Unit - 1
15 Hours
Basics of Atomic and Nuclear Physics
Basic concept of atomic structure; X-rays characteristic and production; concept of bremsstrahlung and auger electron, the composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half-life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission.

Interaction of Radiation with matter

Types of Radiation: Alpha, Beta, Gamma and Neutron and their sources, sealed and unsealed sources, Interaction of Photons: Photoelectric effect, Compton Scattering, Pair Production, Linear and Mass Attenuation Coefficients, Interaction of Charged Particles: Heavy charged particles - Beth-Bloch Formula, Scaling laws, Mass Stopping Power, Range, Straggling, Channelling and Cherenkov radiation. Beta Particles- Collision and Radiation loss (Bremsstrahlung), Interaction of Neutrons: Collision, slowing down and Moderation.

Unit - II

Radiation Quantities and Units

Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC).

Radiation detection

Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Geiger Muller Counter), Scintillation Detectors (Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermoluminescent Dosimetry

Radiation safety management

Biological effects of ionizing radiation, Operational limits and basics of radiation hazards evaluation and control: radiation protection standards, International Commission on Radiological Protection (ICRP) principles, justification, optimization, limitation, introduction of safety and risk management of radiation. Nuclear waste and disposal management. Brief idea about Accelerator driven Sub-critical system (ADS) for waste management.

Experiments:

1. Study the background radiation levels using Radiation meter

Characteristics of Geiger Muller (GM) Counter:
2) Study of characteristics of GM tube and determination of operating voltage and plateau length using background radiation as source (without commercial source).
3) Study of counting statistics using background radiation using GM counter.
4) Study of radiation in various materials (e.g. KSO4 etc.). Investigation of possible radiation in different routine materials by operating GM at operating voltage.
5) Study of absorption of beta particles in Aluminium using GM counter.
6) Detection of α particles using reference source $\&$ determining its half-life using spark counter
7) Gamma spectrum of Gas Light mantle (Source of Thorium)

Course Outcomes: By the completion of this course, student should be able to C01: understand the concept of Nuclear radiations and its applications.
C02: gain knowledge about the need of safety measurements in the field of Radiation.

Reference Books:

1. Nuclear and Particle Physics by W.E. Burcham and M. Jokes -Longman (1995)
2. Radiation detection and measurements by G.F.Knoll
3. Thermo luninescense Dosimetry by Mcknlay, A.F., Bristol - Adam Hilger (Medical

Physics Handbook 5)
4. Fundamental Physics of RadiologyW.J. Meredith and J.B. Massey - John

Wright and Sons, UK, 1989.
5. Fundamentals of Radiation Dosimetryby J.R. Greening - Medical Physics Hand Book Series, No.6, Adam Hilger Ltd., Bristol 1981.
6. Practical Applications of Radioactivity and Nuclear Radiations by G.C. Lowental and P.L. Airey - Cambridge University Press, U.K., 2001
7. An Introduction to Radiation Protectionby A. Martin and S.A. Harbisor - John Willey \& Sons, Inc. New York, 1981.
8. Medical Radiation Physicsby W.R. Hendee - Year Book - Medical Publishers

Inc. London, 1981

Chairperson
Dept. of Physics in sics
Board of Studies in Physics
Osmania University
Bhavan's Vivekananda

(ax Rhavan BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri

Autonomous College | Affiliated to Osmania University
Accredited with 'A' Grade by NAAC
W.e.f the academic year: 2023-24

Value Added Course
Course Name: Weather Forecasting Course Code: PH_VAC_WF
(30 hours)
HPW: 2
Credits: 02
Course Objectives: The aim of this course is designed to
COI: infer knowledge about Weather systems and their forecasting
CO2: develop an awarenessregarding the causes andeffects of different weather phenomenon

Unit - I

15 Hours
Introduction to atmosphere
Elementary idea of atmosphere: physical structure andcomposition; compositional layering of the atmosphere; variation of pressure andtemperature with height; air temperature; requirements to measure air temperature;temperature sensors: types; atmospheric pressure: its measurement; cyclones andanti cyclones: its characteristics

Measuring the weather

Wind; forces acting toproducewind; windspeed direction: units, its direction; measuring wind speed and direction; clouds and rainfall radiation: absorption, emission and scattering in atmosphere; radiation laws.

Weather systems

Global wind systems; air masses and fronts: classifications; jetstreams;local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes.

Unit - II

15 Hours

Climate and Climate Change

Climate, its classification; causes of climate change;global warming and its outcomes; air pollution; aerosols,ozonedepletion, acid rain,environmental issues related to climate.

Basics of weather forecasting

Weather forecasting: analysis and its historicalbackground; need of measuring weather; types of weather forecasting; weatherforecasting methods; criteria of choosing weather station; basics of choosing site andexposure; satellites observations in weather forecasting; weather maps; uncertainty andpredictability; probability forecasts.

Demonstrations and Experiments:

1. Study of synoptic charts \& weather reports, working principle of weather station.
2. Processing and analysis of weather data:
(a) To calculate the sunniest time of the year.

(b) To study the variation of rainfall amount and intensity by wind direction.
(c) To observe the sunniest/driest day of the week.
(d) To cxamine the maximum and minimum temperature throughout the year.
(e) To evaluate the relative humidity of the day.
(t) To examine the rainfall amount month wise.
3. Exercises in chart reading: Plotting of constant pressure charts, surfaces charts, upper wind charts and its analysis.
4. Formats and elements in different types of weather forecasts/ warning (both aviation and non-aviation)

Course Outcomes: By the completion of this course, student should be able to CO1: Identifythecauses andeffects of different weather phenomenon
CO2: understand the basic forecasting techniques
Reference books:

1. Aviation Meteorology by I.C. Joshi, 3rd edition 2014 - Himalayan Books
2. The weather Observers Hand book by Stephen Burt, 2012 - Cambridge

University Press.
3. Meteorology by S.R. Ghadekar, 2001 -Agromet Publishers, Nagpur.
4. Text Book of Agrometeorology by S.R.Ghadekar, 2005 - Agromet Publishers, Nagpur.
5. Why the weather by Charls Franklin Brooks, 1924 - Chpraman\& Hall, London.
6. Atmosphere and Ocean by John G. Harvey, 1995 - The Artemis Press.

Board of Studies in Physics
Osmania University
Hyderabad - 500007

